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AbstracG-The importance of convective effects in exothermic chemical reactions taking place in the 
gaseous or liquid phase m a parallel-plate geometry is investigated by means of a linear stability analysis 
of the temperature distribution predicted by the classical conduction theory of thermal ignitions, in which 
the reactions are taken to be of zero order. The criticai Rayleigh numbers for the onset of convection are 
determine by the numerical solution of an atgebraic eigenvalue problem derived from the stability 
analysis using a ‘selected points’ method. The relationship of the theory to the observations of convective 
&‘ccts in experimental systems with spherical geometry, for which no equilibrium solutions of the purely 

conductive theory exist, is discussed. 

NOMENCLATURE 

pre-exponential factor in Arrhenius’ 
Law ; 
radius of reaction vessel; 
activation energy of reaction; 
acceleration due to gravity; 
wave vector, see equation (25); 
dimensionless pressure; 
Prandtl number, V/K; 

exothermicity of reaction; 
gas constant; 
Rayleigh number, gd3ctRTi/mE; 

f-3 density of fluid; 

($3 dimensionless temperature. 
Subscripts 

CR, value at ignition limit; 

k, denotes dependence on wave vector k; 
min, minimum value as k varies; 

0, value at wall of vessel; 
x,y,z Cartesian components. 

Superscripts 
- 

conduction-only solution; 
I 
7 perturbation quantity. 

Rd’), modified Rayleigh number, gd3aATIKv, 1. INTRODUCTION 

see equation (40); IN THIS paper we are concerned with the import- 

T temperature; ante of convection in the heat transfer processes 

1 
dimensionless velocity; involved when exothermic chemical reactions 
unit vector in vertical direction. take place in a fluid medium. Such reactions 

Greek symbols may be described by the theory of thermal 

% coefficient of cubical expansion of ignitions, which has many practical applications 
fluid ; to situations in which combustion and explosion 

P> R T,IE ; occur. Following the initial contribution of 

6 QEd2A exp( - E~RT~~~~RT~; Semenov [l], the classicial theory of thermal 
AT, T- To; ignition described by Frank-Kamenetskii [Z] 

K, thermal conductivity of fluid; was formulated, chiefly by Todes and Frank- 

V, kinematic viscosity of fluid; Kamentskii. In this theory heat transfer is 
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assumed to occur by means of conduction alone. 
However, for reactions taking place in the 
gaseous or liquid phase, convection may some- 
times be expected to be a significant heat trans- 
fer mechanism, and the predictions of the classical 
theory may need to be modified accordingly. 
Indeed, of the three cases discussed in detail in 
[2], namely those in which the reacting medium 
is confined (i) between infinite horizontal planes, 
(ii) inside a circular cylinder and (iii) inside a 
sphere, only (i) can exhibit, for a fluid medium, 
the truly stable temperature distribution pre- 
dicted by the classical theory, since in (ii) and 
(iii) the classical temperature distribution im- 
plies the existence of tem~rature gradients 
perpendicular to the direction of the gravity 
vector. Here we examine the stability of this 
classical conduction solution to small pertur- 
bations in order to predict when convection 
effects will become significant. The importance 
of convection effects has been noted experiment- 
ally by Tyler [3] and Ashmore, Tyler and 
Wesley [4] in spherical vessels, and Merzhanov 
and Shtessel [5] in parallel-plate vessels. 

The purely conductive theory is governed by 
the steady-state diffusion equation for the 
temperature field, with a heat source term 
derived by assuming that the combustion 
reaction is of zero order, and that its rate 
depends on the temperature in accordance with 
Arrhenius’ Law. The assumption of a zero order 
reaction may be regarded as an approximation 
which neglects the consumption of reactants 
in the course of the reaction. Frank-Kamenet- 
skii’s non-dimensionalisation scheme leads to 
an equation whose solutions are found to 
depend on two dimensionless parameters 6 and 
/?. A measure of the relative rates of supply and 
removal of heat, and hence of the likelihood of 
the system to explode, is provided by 6, whilst 
p character&es the explosive properties of the 
reacting medium, for a given temperature T, of 
the environment. Analytical solutions are pre- 
sented by Frank-Kamenetsk~ [2] for the simpler 
form of the equation obtained in the limit /? -+ 0; 
numerical solutions for some non-zero values of 

/3 were found by Parks [6]. The aim of both 
investigations was to determine the ignition 
limit; this is the interpretation given to the 
critical value S,,(p) of 6 above which no solutions 
of the steady-state equation exist. In Section 3 
of this paper the ‘selected points’, or ‘collocation’, 
technique of Lanczos [7] is used to solve the 
non-linear conduction equation for several 
values of 8. The results are compared with those 
given in [2] and [S]. Althou~ attention is con- 
fined here to the parallel-plate geometry the 
other geometries considered in [2] are readily 
treated using the same technique. 

In Section 4 we study convective effects in the 
case of parallel-plate geometry, by seeking 
critical Rayleigh numbers below which the 
predicted conduction solutions are stable to 
small disturbances. This we achieve by using 
linear stability theory in conjunction with the 
full fluid mechanical equations for the gaseous 
or liquid medium. The application of linear 
stability theory, of which a full description is 
given by Chandrasekhar [S], ieads to an eigen- 
value problem for a system of ordinary dif- 
ferential equations. Linear stability analyses of 
situations which differ from that considered 
here in the form of internal heat generation have 
been made by several authors; in the classical 
Btnard problem (see Rayleigh [9] and Pellew 
and Southwell [lo]) there is no internal heat 
generation, whilst Roberts [ll] solves the case 
in which there is uniform heat generation. 

Here we represent the solution of the system 
of differential equations arising from the stability 
analysis by a finite series of Chebychev poly- 
nomials. Equations for the coefficients in the 
series are found by means of the ‘selected points’ 
method described in [7]. In this way the eigen- 
value problem is transformed in Section 5 into 
an algebraic eigenvalue problem, for the solution 
of which many techniques are available. We 
adopt one of the so-called ‘power’ methods 
described, for example, by Wilkinson [12]. 

For each value of 6, the critical value Ramin 
of the Rayleigh number thus calculated may be 
regarded as the smallest Rayleigh number at 
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which convection. effects are significant. Hence 
for lower values of the Rayleigh number the 
predictions of the classical condition theory 
should be valid. However, for values above the 
critical value convection effects may be expected 
to be significant; considerable modification of 
the temperature profiles calculated from the 
purely conductive theory may then result. 
Furthermore, the ignition limit a,_, will also 
be dependent upon the Rayleigh number. 
The enhancement of heat transfer processes 
when convection occurs will lead to higher 
values of 6,, than those derived from the 
classical theory. 

The critical Rayleigh numbers calculated here 
for the parallel-plate geometry are close to those 
at which convection was first observed to be 
significant in a spherical apparatus in [3] and 
[4]. Since, however, in a fluid medium the 
temperature profiles predicted by the purely 
conductive theory cannot exist in equilibrium 
in a spherical geometry, the experimental values 
may be regarded as stability limits at best only 
in a ‘quasi-steady’ sense. This possibility would 
be realised if convection were unimportant 
relative to conduction in establishing the basic 
profile, so that the convective effects which 
inevitably occur in the experimental situation 
could be considered to arise from perturbations 
of the type with which we are concerned here. 

Unfortunately, although the experiments des- 
cribed in [5] were performed in a parallel-plate 
vessel, the minimum values of the Rayleigh 
number leading to noticeable convective effects 
were not determined. 

2. THE GOVERNING EQUATIONS 

In order to formulate the equations governing 
the dynamics and thermodynamics of the 
chemically reacting system studied, we must 
represent the heat production of the reaction by 
a spatial distribution of heat sources. If the 
exothermicity of the reaction is Q, and if the 
rate of reaction depends on the temperature T 
according to Arrhenius’ Law, then the density 
4 of heat sources is given by 

q = QA.04 exp(--WT), (1) 

where A is the ‘pre-exponential factor’, E is the 
activation energy of the reaction, and f(c) is a 
function of the reactant concentrations c. Here 
we represent the combustion reaction by a zero- 
order reaction, so that f(c) = 1. If distances are 
non-dimensional&d with respect to a length 
d typical of the vessel containing the reacting 
medium, the adoption of Frank-Kamenetskii’s 
dimensionless temperature 4, defined by 

where To is a temperature typical of the system, 
allows us to write the continuity, momentuni 
and energy equations governing the system in 
the non-dimensional forms 

v.u=o, (3) 

au i - + F- (u . V)u = - Vp + V2u + Rnr#G, at (4) 

and 

Pr $ + (u . V)C$ = V’+ + Gexp{ &(l + /Ic$)} 

(5) 

respectively. Here velocities are measured in 
units of K/d, where K is the thermal diffusivity, 
time in units of d2/v, where v is the kinematic 
viscosity, and pressure in units of Kvp,/d2. In 
heriving the equations (3H5) it has been assumed 
that 1 T - To ( + To so that the Boussinesq ap- 
proximation may be made; that is, the density 
p has been assumed to be related to the tempera- 
ture by 

P - P,, = -mp,(T- To) (6) 

in the buoyancy term of (4) but elsewhere the 
density and all other physical parameters of the 
reacting fluid have been assumed constant. The 
dimensionless parameters characterizing the 
system are the Prancl:i number 

Pr = V/K, 

(7) 
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the Rayleigh number 

Ra = gd3aRT2/uvE, 

Frank-Kamenetskii’s parameter 

6 = QEd2Aexp( - E/RT,)/KRT~, 

and 

fi = RT,/E. 

(f-4) 

(9) 

(10) 

solely with the stability of a system contained 
between infinite horizontal plates separated 
by a distance 2d and held at a constant tempera- 
ture To. Here, therefore, we shall only discuss 
solutions of (12) appropriate to such a situation, 
although the method of solution described is 
also applicable to cases of cylindrical and spheri- 
cal geometries when the temperature depends 
on the distance from the centre alone. Hence we 
consider The steady-state equations governing the 

classical conduction theory are obtained from 
(3x5) by setting u E 0 and omitting the explicit 
time derivative terms. This gives 

and 

Vj = Ra& (11) 

V”$J + dexp{$/(l + 86)) = 0, 
(12) 

where we use an overbar to denote solutions 
of the equations governing the purely conductive 
theory. In the next Section we consider the 
solution of these equations. 

3. CONDUCTION-ONLY STATE 

Solutions of equation (12) governing the 
temperature field in the steady-state purely 
conductive theory, and values of the ignition 
limit 6, obtained from it have been presented by 
several authors. When 6 ~6, a solution of 
(12) exists, but for 6 > 6, no solutions of the 
steady-state equation exist and according to 
this theory the system is expected to explode. 
Analytical solutions of (12) for the case of 
parallel-plate geometry with p = 0 are given 
by Frank-Kamenetskii [2], together with the 
ignition limit 6, = 0.88. Parks [6] uses stan- 
dard finite-difference methods to integrate (12) 
for several non-zero values of /3 and tabulates 
6, as a function of /?. Na and Tang [13] trans- 
form the two-point boundary value problem 
posed by (12) and the associated boundary 
conditions for 4 into an initial value problem 
in order to be able to employ a Runge-Kutta 
technique. 

In Section 4 of this paper we shall be concerned 

d2d; 
s= -dexp@/(l + B&1, (13) 

subject to the boundary conditions 

f$=O on z= 21. (14) 

We solve the non-linear equation (13) itera- 
tively, using a quasilinearized form of the 
equation at each stage of the iteration. Thus, if 
$(“) denotes the nth iterate for $, we 
terms of second and higher orders in 
$?“- “) to obtain the linear equation 

neglect 
@‘“’ - 

d2$“’ 

dz2+ 

6 exp { $(“- I)/( 1 + /?$(“- I))} 4(n) 

(1 + /@‘“-“)2 

= - [6exp{$‘“-‘j/(1 + /3$(n-iJ)}] x 

[l - $‘“+)/(i + /?$(“-r))2] (15) 

for the current iterate d;?, which must satisfy 
the boundary conditions 

qcn)=O on z=+l. (16) 

We represent #“) by the series 

$(n’(z) = 5 bjTj _ 1 (Z), 
j=l (17) 

where q is the Chebychev polynomial of degree 
j. The coefficients bj are determined by employ- 
ing the ‘selected pomts’, or ‘collocation’, method 
of Lanczos [7]. Thus the boundary conditions 
(16) provide two equations for these coefficients 
and the remaining (N - 2) equations required 
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are obtained by satisfying (15) exactly at the 
points 
zi = cos{(i - l)n/(N - 3)f i = l,.. ..N - 2. 

(18) 

The resulting set of N simultaneous linear 
equations for b,, . . . , b, is now solved using a 
standard numerical algorithm, and $(“) then 
calculated from (17). The iteration cycle is 
repeated until successive iterates for $ differ 
by less than a prescribed tolerance, which in our 
integrations was chosen to give 4 significant 
figures for 4. 

When the choice (18) is made for the selected 
points, the errors in $(“) arising from the trunca- 
tion of the series (17) after N terms may be 
expected to be distributed fairly uniformly over 
the entire range 1 z 1 < 1. The coefficients bj are 
found to decrease steadily in absolute value as 
j increases; consequently, since 1 T@)I 6 1 when 
Iz/ 6 1 for all j, an estimate of the truncation 
error is available from the magnitude of the last 
few coefficients. The truncation error estimated 
in this way was 0 (10w9) in our calculations for 
N = 20. 

Temperature profiles for a range of values of 
p between 0.01 and 0.1 are presented in Fig. 1 
for 6 = 0.3 and 6 = 0.7. These results were 
obtained using N = 20 in (17). The correspond- 
ing profiles obtained analytically for fi = 0 by 
Frank-Kamenetskii are also plotted for com- 
parison. Our profiles for /I = 0 agree with those 
of Frank-Kamenetskii to at least 4 significant 
figures. 

In Fig. 2 the behaviour of the ignition limit 
6, as a function of /? is shown, together with 
the corresponding results from Parks’ calcula- 
tions. Frank-Kamenetskii found the limiting 
value 6,, = 0.88 when B = 0. 

It must be emphasized that the equation (13) 
governing the purely conductive theory is 
appropriate to a fluid medium only when that 
medium is at rest. In the next Section we shall 
examine the stability of this solution, for which 
the velocity field is zero, when small perturba- 
tions of the velocity and temperature fields are 

FIG. 1. Temperature profiles from the steady-state purely 
conductive theory. 

I .oo 
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B 
FIG. 2. Variation of the ignition limit 6, with j% 
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made. It will be found that for each set of values 
of /I and 6 for which 6 < S,,(jI) a critical value 
Ramin of the Rayleigh number exists, for values 
below which such perturbations will decay, but 
above which there will be some perturbations 
which do not decay. Thus for Rayleigh numbers 
below the critical value the conduction theory 
of this Section will be valid, whereas for values 
greater than Ramin an appreciable modification 
may result from convective effects. For example, 
the ignition limits 6, for situations in which 
convection occurs will be higher than the 
corresponding limits for purely conductive 
systems in general. 

4. LINEAR STABILITY ANALYSIS 

In order to investigate the hydrodynamic 
stability of the conduction solutions discussed 
in Section 3 we examine the behaviour of small 
temperature and velocity perturbations of these 
solutions. We suppose that 4, p and u result 
from perturbations 4, p’ and u’ of the base state, 
so that 

4 = 4 + 4’3 

p=F+p’ 

and u = B + u’. 

Then 4, p and u must satisfy 
and the boundary conditions 

(19) 

equations (3)-(5) 

$J = 0 and u = 0 on z = fl, (20) 

for all time. By neglecting terms of second and 
higher orders in the perturbation quantities 
we obtain the linear equations 

V.u’= 0, (21) 

ad 
at= - Vp’ + V’u’ + Ra@Z, (22) 

and 

Pr z + (uIV)$ 

= V2@ + Gexp@/(l + BB)) $, 

(1 + G)’ ’ (23) 

since H = 0. The boundary conditions for 4’ 
and u’ are 

@=O and u’=O on z= +l. - (24) 

It may be noted here that similar stability 
analyses have been applied by other authors to 
problems which differ from that under considera- 
tion only in the form of the internal heat genera- 
tion term. For the classical Benard problem, 
discussed by Rayleigh [9] and Pellew and 
Southwell [lo] amongst others, this term is 
zero, while in the case of uniform heat generation 
considered by Roberts [ll] the last term in (5) 
is replaced by unity. 

We now follow the familiar procedure, des- 
cribed in detail by, for example, Chandrasekhar 
[8], of representing the general perturbation we 
have introduced as an integral over all possible 
wave vectors. In view of the linearity of the 
problem we may examine the stability of the 
mode associated with each wave vector sepa- 
rately. A typical mode may be written 

u: = U,(z)exp(i(k .x) + ant}, 

and 
(25) 

4’ = Qk(z)exp{i(k . x) + cokt}, 

where the wave vector k has Cartesian compo- 
nents (kx, ky, 0) and a:, U; may be expressed in 
terms of U,(z) using (21). Substitution of the 
forms (25) into equations (22) and (23) yields 
the equations 

(0’ - k’)‘U, - o,(D2 - k’)U, = Rak2@,, 

and 

(26) 

(0’ + F(z) - k2 - cok)cPr = (D&U, 
(27) 

for the functions U,(z) and G&z), where 

F(z) = dexp@/(l + S$)>>/(l + B&z (28) 
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is a known function of dz D G d/dz, and kZ = 
1 k 1’. The boundary conditions on z = f 1 are 

Qi, = U, = DU, = 0. 

The last condition may be derived from (24) 
using the continuity equation (21). 

The boundary between stability and insta- 
bility for a given wave vector k is given by the 
smallest value of Ra for which a non-trivial 
solution of (26) and (27) subject to the conditions 
(29) exists when Re(o,) = 0. At this stage in the 
application of linear stability analysis to the 
Benard problem, for which the base profile 6 
is linear in z, it is possible to establish the 
Principle of Exchange of Stabilities, which states 
that if Re(o,) = 0 then Im(w,) = 0 also. Here, 
however, as in the case of uniform heat addition 
[ 111, we are unable to obtain such a Principle, 
but there seems no reason to suppose that it is 
violated. Accordingly, we assume ok = 0 in 
(26) and (27) for our marginal stability analysis. 
Then, if we eliminate Qk the critical Rayleigh 
number we seek is, for each k2, the smallest 
positive eigenvalue of the sixth order equation 

(D2 - k2)2(D2 + F(z) - k’)U, = Rak’(Dd;)U,, 

(30) 

subject to the boundary conditions 

U,=DU,=(D2-k2)2U,=0 on z= fl. 

(31) 

For given values of /I and 6, the minimum, 
Ramin, of these eigenvalues Ra as k2 varies is 
the Rayleigh number at which we may expect 
convection to occur first, as the Rayleigh number 
is increased gradually from zero. 

In Section 5 we describe the conversion of the 
differential eigenvalue problem into an algebraic 
eigenvalue problem and the numerical method 
adopted to solve the latter. 

5. THE ALGEBRAIC EICENVALUE PROBLEM 

The eigenvalue problem defined by (30) and 
(31) may be solved by one of several techniques, 

for example variational or ‘shooting’ methods. 
However, the suitability of the ‘selected points’ 
method for the solution of two-point boundary 
value problems allows the explicit formulation 
of the problem as an algebraic eigenvalue 
problem, for which powerful solution techniques 
are available. Hence, as for the conduction 
solutions, we represent U,(z) by a finite Cheby- 
chev series 

U,(z) = F ajTj_ ,(z), 
j=l 

(32) 

and find relationships between the coefficients 
aj using the ‘selected points’ method. If a is the 

q, 

vector 

ii 

! , the six boundary conditions (31) 

ai;, 

give six linear relationships between the com- 
ponents of a. We may write these six equations in 
the form 

where 

g(m). a = 0, (33) 

[S”‘lj = Tj- ltz)l,= 1’ 

[tJc2’Ij = DT_- l(Z)l~= 1’ 

and 

[gc3’lj = CD2 - k2)‘7j_ l(41z= ,, 

for j = l,...,M (34) 

and the remaining gcm)s are similarly obtained 
from the boundary conditions at z = - 1. 

By evaluating (30) at (M-6) selected points 
zi we may derive another (M-6) relationships 
between the components of a. These may be 
written 

&) . a = Ra e(‘! a i=l ,...,M - 6 (35) 

where 

[d’“lj(D2 - k2)2(D2 -;t F(z) - k2)Tj_,(z)lZ_ 

(36) 
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and 

[eci’lj = ~2(N(4)Tj_ t(Z)l ===, 
for i = 1,. . . , A4 - 6 

andj = 1,. . . , M. (37) 

It is, of course, preferable that the selected 
points. zt be a subset of the Fi defined by (18). 
Combmmg (33) and (35) we must solve 

____@tL?__ J !--- >a = Rtl e’M-6) a 

9 --I . 
\ ,(@ / \ ’ i38) 

Since the matrix on the left-hand side of (38) 
is non-singular we may multiply both sides of 
(38) by its inverse and so write the equation 
in the form 

Aa = pa (39) 

where p = 1fRa and A is a known M x M 
matrix. 

Thus we require the largest positive eigen- 
value p (corresponding to the smallest positive 
eigenvalue Ra) of the equation (39). When this 
is the sole requirement, the most appropriate 
technique of solution is one of the ‘power’ 
methods described, for example, by Wilkinson 
[ 123. These rely on the observation that repeated 
multiplication of an arbitrary vector by a matrix 
will result in a vector dominated by eigenvectors 
of the matrix corresponding to its eigenvalue of 
largest modulus, so that the ratio of successive 
iterates will tend to this eigenvalue as the 
iteration proceeds. In practice it was found that 
the ‘inverse iteration’ variant was the most 
efficient for our problem: the required first 
approximations to the eigenvalues at given 

4500 

! 

3500 

I 

3ooo, 0 2 3 4 

k 

FIG. 3. Marginal stability curves for 8 = 0.3. 
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FIG. 4. Marginal stability curves for 6 = 0.7. 
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values of 6, B and k were readily provided by the 
eigenvalues at neighbouring values of these 
parameters. 

Figures 3 and 4 show the variation of the 
critical Rayleigh number with the wavenumber 
k for the basic profiles presented in Fig. 1. 
All of the results to which reference is made here 
relate to the case f’r = 1. The results plotted in 
Figs. 3 and 4, which are correct to 6 significant 
figures, were obtained by taking M = 12 in 
(32). The use of M = 24 enables us to calculate 
critical Rayleigh numbers correct to 7 significant 
figures. 

A check on this method of calculation of 
critical Rayleigh numbers was made by applying 
it to the problems solved by Roberts [ll] and 

Table 1. Critical Rayleigh numbers for other problems-a 
comparison of results 

_____ ~_ 
Roberts Pellew and Present work 

Southwell M = 12 M = 24 

Uniform internal 2772.28 
heat generation 
Zero internal 

heat generation 

- 2772.27 2772214 

1707.8 1707.76 1707763 

Pellew and Southwell [lo] using other tech- 
niques. A comparison of the values calculated 
for the minimum, RQ”, of the marginal stability 
curve in each case is made in Table 1. 

6. CONCLUDING REMARKS 

In Fig. 5 the variation with 6 of the calculated 
values of Ramin for several values of B is dis- 
played. These values may be compared with 
Frank-Kamenetskii’s estimate of lo4 for Ramin. 
Since Rarnin does not tend to zero ;IS 6 approaches 
the ignition limit 6, predicted by the classical 
theory it appears that according to our stability 
analysis in this particular geometry it is possible, 
for sufficiently small values of the Rayleigh 
number, to proceed to an explosion without 
convective effects ever becoming significant. 
However, in such a situation some features 
of our model, for example, the Boussinesq 
approximation, may no longer be appropriate. 

As already indicated, the onset of convection at 
Rayleigh numbers above Ramin should be ex- 
pected to lead to modifications in the ignition 
limits 6, from the values predicted by the 
classical theory. The improvement of heat 
transfer processes which will accompany the 
occurrence of convection should allow the 
existence of a non-explosive regime for some 
values of jI and 6 which would otherwise give 
rise to an explosion. 

2000 

t 

I I I I I 
05 O-6 0.7 0.6 o-9 I-O 

a 

FIG. 5. Variation of the critical Rayleigb number with 6. 

Tyler [3] and Ashmore, Tyler and Wesley 
[4] adopt a definition of the Rayleigh number 
which is different from that used throughout 
this paper. Their definition is 

RacT’ = gd3aAT/w, (40) 

where AT = T - To. Thus we have 

Ra’=’ = c%&~.R~. (41) 

If we denote by Ra$jl the minimum, for given 
6 and #I, of RacT’ as k2 varies, then 

Ra$, = ~lr=O.Ra,i,. (42) 

Figure 6 shows the dependence of Ra$, on 6. 
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In [33 and [4] convection effects were observed 
to be si~i~cant for RaCT) ,Z 600. However, as 
was emphasised in Section 1, for a fluid medium 
enclosed in a spherical or cylindrical vessel the 
temperature profiles predicted by the purely 
conductive theory cannot exist in equilibrium. 

I I I I I I 
0 02 0.4 06 08 IO 

8 

FIG. 6. Variation of the critical modified Rayleigh number 
with b. 

Nevertheless, perturbation effects of the type 
discussed here may be directly relevant to the 
experimental situation if a quasi-steady tem- 
perature profile develops, principally by conduc- 
tion mechanisms, whilst the inevitable 
convection effects remain small. Further light 
could be shed on this probiem by numerical 
integrations of the full equations (3)-(5) in 
geometries corresponding to the experimental 
system. 
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LA STABILITE DYNAMIQUE DE FLUIDES CONFINES EN REACTION EXOTHERMIQUE 

Rbum& LFmportance des effets convectifs dans les reactions chimiques exothermiques ayant lieu dam 
la phase gazeuse ou liquide dam une geomttrie a plans paralleles est &ttud& a l’aide de l’analyse lint!aire 
de stabilite de la distribution de temperature predite par la thtorie de conduction classique d’ignition 
thermique dans laquelle fes reactions sont prises d’ordre zero. Les nombres critiques de Rayleigb pour 
1’~tablissement de la convection sont determinb par la solution numerique dun problome a valeurs 
propres d&iv& de I’analyse de stabilite qui utilise une methode “a points stlectionn&s”. On discute Ia 
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relation entre la theorie et les observations des effets convectifs dans des systtmes experimentaux a geomttrie 
spherique pour laquelle existent des solutions hors equilibre de la thtorie purement conductive. 

DIE DYNAMISCHE STABILITAT VON BEGRENZTEN FLUIDEN MIT 
EXOTHERMER CHEMISCHER REAKTION 

Zusammenfassung- Die Bedeutung der konvektiven Effekte bei exothermen chemischen Reaktionen, die 
in gasfdrmiger oder fliissiger Phase zwischen parallelen Platten stattlinden, wurde mittels einer linearen 
Stabilitiitsanalyse der Temperaturverteilung untersucht. Die Temperaturverteilung wurde durch die 
klassische Leitungstheorie der thermischen Ziindung bestimmt ; die Reaktionen wurden als solche nullter 
Ordnung angenommen. Die kritische Rayleigh-Zahl fiir das Einsetzen der Konvektion wurde durch die 
numerische Losung eines algebraischen Eigenwertproblems gelost. das von der Stabilitatsanalyse mittels 
einer Methode der “ausgewahlten Punkte” abgeleitet wurde. Es wurde der Zusammenhang der Theorie 
mit den Beobachtungen konvektiver Effekte in Experimenten mit Kugelgeometrie diskutiert, ftir die 

keine Gleichgewichtslosungen fur das reine Leitungsproblem existieren. 

~MHAMWIECICAH YCTO@IHBOCTb 3K30TEPMWIECKB I’Ehl’MPYIOIIIMX 
WiJ(ICOCTE~ R HEEOJIbIUOM OB’bEME 

AatroTalyrB-BnnBHBe KoHBeKnaB npa 3K30TepMWrecmix peannnnx B H(MRKO~ MJIEI ra3onOii 
I#Ia3aX B nJIOCKO-napaJUIeBbHbIX KaHajIaX OneHBBa.iTOCb n0 J’CTO&KIBOcTB JIMHaBHOrO npOI#Wn 
TeMnepaTyp, paCWTaHHOr0 n0 KJIaCCBYeCKOti TeOpKB TenJIOnpOBORHOCTB flJIB TenJtOBOrO 
nocnnahienennn npn peaunn3x nynenoro nopnntta. KpbiTAecKoe wcj?o Panen, xapaK- 
TepKayromee B03HBKHoBeHKe KoHBeKnKB, onpeaenfrnocb 113 ~ncnetruoro pemennn anre6paw 
secKo# aaaaw 0 co6cTBeHHbrx 3Ba9eBKKx, nbrTeKaromeii ~3 aHanB3a YCTO~~~MBOCTII, c 
nOMOmbIO MeTOga OTAeJIbHbIX TOYeK. 06CyHt~aeTCfI COOTBeTCTBKc TeOpHB C Ha6JIIOAaeMLSMK 
KOHBeKTBBHbIMK 3+&KTaMB npB 3KCnepMMeHTaJrbHOM KCCJIe~OBaHBK C~cpBYeCKBX OheMOB, 

AJIH KOTOPbIX WlCTaR TeOpEIM Tf3IJIOIIpOBO~HOCTvl He Hat?T PaBHOBWHbIX $leIIIeHElti. 


